
 What I Learned While Writing Boot Sector Games What I Learned While Writing Boot Sector Games What I Learned While Writing Boot Sector Games
 in Pure Assembly Language in Pure Assembly Language in Pure Assembly Language

 Krzysztof Krystian Jankowski

 THIS IS A FIRST DRAFT
 Mon, 5th of 08/2024

 I'm an indie game developer. I made a lot of games in many
 languages raging from basic, lua, python to C, C++, and Turbo
 Pascal. A huge number of JavaScript nonsense. Recently I was
 concentrated on retrocomputers, 386 era. Making those, low level,
 DOS prototypes I learned a lot about VGA graphics and memory
 management. I did one simple text-base adventure in ARM assembly
 few years ago. I was prepared for the real challenge - x86 boot
 sector assembly. In this article I will tell you the story, show
 some code tricks, and comment on the source of games I made so
 far for this category.

 Make some tea, sit comfortably, and enjoy the world of pure
 assembly on a bare metal x86 platform.

 1

 Introduction to the Boot sector Assembly Introduction to the Boot sector Assembly Introduction to the Boot sector Assembly

 What is a boot sector assembly you may ask? When an IBM PC
 starts it runs BIOS code and then search for the boot sector
 code. This can be the first sector of a floppy or a disk drive.
 It is sized at exactly 512 bytes. No more no less. Less space
 needs to be zero-ed as the last data of this sector needs to
 include a boot sector signature. I'm also adding a "P1X" charac-
 ters next to it so if anyone reads the HEX dump of this file the
 name will appear on the screen.

 This boot sector code has only one purpose - to find a
 sector with the Operating System and runs it, sometimes writing
 familiar error message after no OS was found. This is just a code
 - a clever programmer can make other use for it - make a demo, or
 a game, replacing boot sector code. The biggest benefit of this
 hack is that the produced binary does not need any operating
 system as it runs directly on the hardware - 16-bit era, Intel
 CPU. BIOS provides input from a keyboard and output to the VGA.
 320x200 in glorious palette of selected 256 colors (16bit RGB).
 Classic. It also gives direct access to the memory. That is all
 you need to make a demo or a game. I shoot for a game, I'm a
 game developer not a demo scener, at least at the moment this
 statement is fully true.

 Getting right knowledge was not that hard as there are a lot
 of resources for a size coding on the internee[1]. There is also
 a very helpful group on Discord[2] dedicated fully to the topic
 of (very) small demos. Mostly 256 bytes in size.

 [1] size coding.org / x86
 [2] discord group

 2

 Let's make it straight - to make anything usable I must fit
 in a 512 bytes or around 200 processor commands. Any data also
 needs to fit. Fighting for that last byte, optimizing code, doing
 all the dirty tricks you can think of is the essence of this
 journey.

 Bootstrapping The Application Bootstrapping The Application Bootstrapping The Application

 Not all 512 bytes are free to use - there is a boilerplate
 of code required before our code can start. In essence it can be
 as short as setting up 16 bit mode, memory positions for VGA
 graphics, boot sector code, and the signature at the end. This
 will take XXX bytes and everything between is for us. Even in
 this boilerplate part we can use some tricks to make it smaller.

 mov ax, 0x0
 mov ds, ax ; clear ds
 mov ax, 0xA000
 mov es, ax ; set output adress to VGA screen memory

 This can be optimized as follow:

 xor ax, ax ; 1 bit less
 mov ds, ax
 push 0xA000 ; 1 bit less
 pop es ; 1 bit less

 We saved 3 bits!

 One of the first challenges I got was to keep the game loop
 in consistent peace - some kind of delay synced to the CPU clock
 or VSYNC. In the end I got two versions: one for pure boot sector
 and other for DOS executable.

 Boot sector/BIOS version:

 delay:
 mov ax, [0x046c] ; Get current clock time
 inc ax ; Increment it by 1 cycle (42ms)
 .wait
 cmp [0x046c], ax ; Compare with the current timer
 jl .wait ; Loop until equal (Jump Less)

 Version for a DOS systems:

 delay:
 push es ; Save es (VGA)
 push 0x0040
 pop es ; Set es to 0x0040
 mov bx, [es:0x006c] ; Save the current tick
 .wait
 mov ax, [es:0x006c] ; Load current tick
 sub ax, bx ; Calculate elapsed ticks (new - old)

 3

 jz .wait ; Loop until equal (Jump Zero)
 pop es ; Load es back

 As we are on the DOS versions - those needs proper exit code
 and checking for ESC to halt. It can be size coded to just 5
 lines:

 esc:
 in al, 0x60 ; Read keyboard port
 dec al ; ESC is 1, if we dec it by 1 it will equal 0
 jnz game_loop ; Loop if anything else (Jump Not Zero)

 exit:
 push 0x0003 ; Text mode
 pop ax
 int 0x10 ; Back to text mode

 This should be the last executable line in the code. I keep my
 procedures and data after this point.

 4

 Graphics on the Screen Graphics on the Screen Graphics on the Screen

 At this point I got a proper loop, can exit the application
 cleanly and have a memory ready to write into it. Next step was
 to drawn a sprite on the screen.

 How to actually "draw" anything with just manipulating
 memory? It turns out not that hard after all, VGA screen is a
 one, long, continuum list of pixel colors - starting from the
 upper-left corner of the screen, going all the way up to the
 right, then it wraps to the first pixel of the next line - on the
 left side - and the whole process repeats, up until the last
 pixel in the bottom-right corner will be satisfied.

 To "draw" a pixel - set given address as color - we just
 need to move the color value to the correct memory position. VGA
 graphics in 0x13 mode has 200 lines, each 320 pixels long - this
 gives us 320x200 pixels long memory line. First pixel will be at
 position 0 and the middle one at 320*100+160 - this means 100th
 line (320*100) and 160 row (320/2), and last one as simple as
 320*200.

 Colors - we got default palette of 256 colors at start. It
 is easy to make custom palette, wasting space, keeping it or not
 is one of the hard decisions one must decide to choose in sub-512
 bytes code space. Given the limit, the base 256 colors are fine,
 including gradients and three levels of brightness. First sixteen
 colors are for compatibility purposes - before VGA we got only
 those colors.

 5

 The Sprite The Sprite The Sprite

 Ahh, a sprite. What it is and what it can be. A building
 stone for every game imaginable, at least in the 2D world, the
 only one we know at the times of 386 processors. Even Wolfenstain
 has sprites. We needed to wait for the first Quake to change
 that.

 In my case I needed as small and optimal sprites imaginable
 - to save precious space, for data itself and code that displays
 it on the screen. This means 1-bit, 8 pixels wide sprites. You
 can store the whole line of a sprite in one byte. 8x8 will take 8
 bytes. Each 1 in the data represents pixel light up and the each
 0 represents transparency - this sprite is skipped.

 This is how a simple smile sprite is encoded, first in the binary
 format:

 sprite_smile:
 db 00000000b ; 0x00 in hexadecimal
 db 01100110b ;
 db 01100110b ;
 db 00000000b ; 0x00
 db 10000001b ;
 db 01000010b ;
 db 00111100b ;
 db 00000000b ; 0x00

 You can clearly see the image just looking at the code. This is
 good for prototyping but for the final code it should be convert-
 ed to the hexadecimal values:

 sprite_smile:
 db 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

 6

 Drawing Sprite Drawing Sprite Drawing Sprite

 Once we got the data set and loaded, it is time to draw the
 sprite on the screen. This is a two step process: 1) set sprite
 settings, 2) manipulate memory accordingly by teh draw_sprite
 procedure. Let's start with the color and sprite data address:

 mov bl, 0xF ; 15 is white color
 mov si, sprite_smile ; Set source pointer to the sprite data
 mov di, 320x100+156 ; Set position to the center of the screen
 call draw_sprite ; Call the procedure

 Procedure expect color in bl and sprite data (8 lines) in si
 - source address, and a position set in di - destination adress.
 After the call we should see a nice smile at the center of the
 screen in white color.

 Here is the most size shrieked version of the drawing proce-
 dure I got so far. It reads one byte - a line - of a sprite data,
 shift left it 8 times for each pixel, compare the removed value
 and set color in that place or skips it, all of this repeated 8
 times for each line. Let's jump to the code:

 draw_sprite:
 mov dx, 8 ; dx will hold the number of lines
 .draw_row:
 mov al, [si] ; Read the first byte of a sprite to al
 mov cx, 8 ; Set cx counter to 8 pixels (wide)
 .draw_pixel:
 shl al, 1 ; Shift left the data by 1, this sets
 ; the carry flag representing value
 ; removed by shifting - left most pixel
 jnc .skip_pixel ; if 0 then skip this pixel
 ; using Jump Not Carry
 mov [es:di], bl ; Set destination memory to color (bl)
 .skip_pixel:
 inc di ; Increase destination adress - next pixel
 loop .draw_pixel ; Loop back until cx more than zero
 inc si ; Increase source address - next line
 add di, 312 ; Move destination address to next line
 ; 320 for a line minus 8 pixels sprite
 ; width, hence 312
 dec dx ; Decrease dx after each line
 jnz .draw_row ; Jump if dx > 0 using Jump Not Zero
 ret ; Return

 7

 Double Buffering for Smooth Animations and lack of flickering Double Buffering for Smooth Animations and lack of flickering Double Buffering for Smooth Animations and lack of flickering

 To avoid flickering on the screen that is a typical problem
 when we update the memory of the VGA at the wrong time - when it
 is actually drawing something on the screen - one can implement
 Double Buffering. This technique dedicates part of the available
 memory to a screen buffer - in the game loop this memory is
 updated as needed, and in the end pushed to the main VGA memory
 in a few consequent, and very fast, copying from buffer. No more
 flickering. The downside is that it shrinks our space for the
 game play code or data even more. Any game needs this to be play-
 able so it's a good compromise.

 At start of the program set es to the new buffer position -
 0x1000 in this case. Overall code will look like this:

 push 0x1000
 pop es

 game_loop:

 ...manipulate memory by game code...

 VGA_blit:
 push es
 push ds ; Save es, ds

 push 0xA000
 pop es ; Set target as VGA
 push 0x1000
 pop ds ; Set source as Double Buffer
 mov cx, 0x7D00 ; We will be moving words (4 bits)
 ; So it needs to be repeated 1/4 of
 ; the length of buffer - 0x7D00
 xor si, si ; Clear source pointer
 xor di, di ; Clear destination pointer
 rep movsw ; Repeat (cx-times) move word

 pop ds
 pop es ; Restore ds, es

 jmp game_loop

 And that is it. The engine is ready for the actual game logic
 code and some nice sprites.

 8

 Game play Mechanics I Did So Far Game play Mechanics I Did So Far Game play Mechanics I Did So Far

 I made six games, four of them playable and actuary finished
 and published on my site, pouet, and itchio for any financial
 support. In each of them I tried something new, mostly to have a
 new thing to crack and learn something of it. The once that did
 not finish as playable game used as a jumping place for a next
 project with some new trick.

 9

 Land Me Land Me Land Me
 Basic Engine Basic Engine Basic Engine
 First Dive into the Bootsector Waters

 I wanted to start very simple - just enough to learn the
 basic. One button gameplay. Player mission is to safely land a
 roket on the ship, that is drifting rapidly over the ocean. Payer
 only changes direction, left or right, to steer the rocet. To
 make the game interesting I've added obstacles, stationary float-
 ing platfroms, one touch and level restarts. There are four
 levels and a helth system.

 First trick was to store the levels data efficiently. Keep-
 ing a list of bloks with postion and size is not very effcient as
 you need word-szized (2 bytes) for those. Instead I dividd the
 screen into 32px wide blocks. In memory I keep two 1 byte values:
 block position and block width.
 Another cool trick I added here is that the last blocks of last
 level are made of "P1X" signature I'm always keep in the end of
 the file.

 Collistion detection is always tricky - there are many
 strategies to choose from. For my first attempt I came up with a
 pixel color cheking, platforms are colored in "dangerous" color,
 ending mission if bottom part of the rocket ever be in the same
 position. Same check also looks at the "good" color, that is the
 ship, sucessfuly ending current level and loads next one.

 Game is challanging, having each level harder with unique
 soution, someimes few solutions.

 10

 Fly Escape Fly Escape Fly Escape
 Animated Sprites

 I wanted enemies, action, more drama, easy to learn, hard to
 master type of a game. In Fly Escape player steers a fly that
 must go to the fower to pass level. There are spiders, a lot of
 them, more after each level. One touch and the life meter goes
 one point down, all to the end of the game.

 I introduced animatd sprites (two frames) for a fly, flower
 and spiders, colorful, unique background for each level, and
 there are infinte number of levels, all driven by a random number
 generator. Still a one-button gameplay: changing fly angle it is
 flying in a clock-wise direction after each press. There is an
 entitie system and fly and enemies has eight direction movement.
 I even squished a life metter over the fly. A lot for a 512
 bytes!

 11

 Bit of a Treasure Bit of a Treasure Bit of a Treasure
 Isometric Grahics

 So far I made flat, 2D, graphics in a classic frnt view. The
 logical next step was to fake the third dimenssion by incorporat-
 ing isometric tiles. On a first glace this seams simple, every-
 thing is stil flat and there is no perspective involved as it
 uses otographic camera. This type of rendering game world is not
 new to me so I knew how to handle it. In essence sprites needs to
 be drawn from the back to front, top-right to bottom-left in
 isometric world, and with a right shift of position for each
 tile. This way the oclussion works as expected and we get the
 isometric illusion.
 It will ony works with a correctly drawn sprtes. The main
 trick is to drawn each diagonal line as two pixels wide, one
 pixel height. In this game I was also using 1-bit sprites that
 adds a little bit of a challange to make them readable. To fix
 this problem I made two sprites for each: one with a body/shil-
 luet and another with different color for highights/details that
 was drawn on to of the first. End product came out suprisingly
 good.

 12

 Moth Hunter Moth Hunter Moth Hunter
 Muse

 13

 Next Game Next Game Next Game
 Two-bit Color Graphics

 I was thinking of a way to upgrade my sprite rendering with
 adding more colors. With 2 bits per pixel I can have 4 colors and
 still quite small data, making each line of a 8 wide sprite a
 word length. First color (two zeros) represents transparent, skip
 pixel, pairs: (0,1), (1,0), and (1,1) are shades of a given color
 for a sprite. It took me a moment to figure out how to draw this
 on the screen, while doing this I also manage to add mirroring
 feature. Now I only need to keep half the date for a sprite,
 mirroring the other part, having sixteen pixel wide sprites for
 free!:

 With the mirroring in mind I started sketching some pixel
 art that takes this concept and made full advantage of it. The
 space ship is made of just two sprites: 8x12 and 8x8, mirrored,
 placed on each other. Each sprite have own palette: a start
 index, next colors are selected using +2, +4, +6 positions. It's
 a big step up over my previos games. Game Boy sprites are com-
 posed in simillar way.

 Another advancment I made is in the steereng the ship dpart-
 ment.I've added velocity, increased when cursor button is
 pressed, giving illusion o anaog movent - shorter press moves the
 ship less than longer press. Now steering the ship fees more like
 arcade games. The code is not optimzed yet:

 Entities, the core of many arcade like games. Each enemy,
 powerup, bullet is an entity. Some of them have complex logic
 like enemies, other just moves in one directoion, bullets, other
 hovers, power-ups. It adds a bit more code at start but gives
 endless posibilities, esential as game grows in complexity.

 Main idea is simple: ddicated part of memory is filled with
 data - entity type id and its properites, position, velocity.
 Algorithm scans the memory and depending on sprite type and
 velocity modifies the positions. Collision checking is also
 performed here for enemy type, if it touches player bullet.

 Collisions.

 14

